SIMILAR SOLUTIONS OF BOUNDARY LAYER EQUATIONS IN THE PRESENCE OF A MAGNETIC FIELD

I. Pop

Inzhenerno-Fizicheskii Zhurnal, Vol. 15, No. 1, pp. 134-138, 1968

UDC 532.517.2:538.249

The author investigates the problem of a plane boundary layer in a viscous incompressible fluid with high conductivity in the presence of a magnetic field. The class of potential flows for which the system examined in [1] reduces to an ordinary system is determined.

In [1] M. V. Belubekyan suggested a method of reducing the nonlinear system of partial differential equations of a boundary layer in the presence of a magnetic field to ordinary differential equations. Belubekyan's method is based on the expansion in powers of x of the parameter characterizing the pressure gradient $\alpha(x) = x(dU/dx)/U$.

Noting that $\alpha(x)$ may have the form

$$\alpha(x) = \frac{a + bx}{1 + cx},$$

we will determine the class of potential motions for which the system considered by Belubekyan reduces to an ordinary system. This method can be extended to the case when $\alpha(x)$ is expressed as the ratio of two polynomials.

Boundary layer equations. As in [2] and [3], we will consider a viscous incompressible conductive fluid with high electrical conductivity. Moreover, we assume that: a) the motion is plane, b) the applied electric field E is equal to zero, c) the magnetic field H is applied in the plane of motion and at infinity is parallel to the velocity of potential motion.

With these assumptions the equations of the stationary boundary layer take the form [1]

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = (1 - \beta^2) U\frac{dU}{dx} + v\frac{\partial^2 u}{\partial y^2} + \frac{1}{4\pi\rho} \left(H_x \frac{\partial H_x}{\partial x} + H_y \frac{\partial H_x}{\partial y} \right),$$

$$uH_y - vH_x = -\frac{1}{4\pi\sigma} \frac{\partial H_x}{\partial y},$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad \frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} = 0.$$
(1)

System (1) must be integrated with the following boundary conditions:

$$u = v = H_y = 0$$
 for $y = 0$,
$$u \to U(x), \quad H_x \to \frac{H_0}{U} U(x) \quad \text{for } y \to \infty. \tag{2}$$

In these equations the coordinate x is taken in the

plane of motion, and the coordinate y normal to that plane.

We set

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x},$$

$$H_x = \frac{\partial A}{\partial u}, \quad H_y = -\frac{\partial A}{\partial x}, \quad (3)$$

and make the change of variables

$$x = x, \quad \eta = y \sqrt{\frac{U}{vx}}, \quad f(x, \ \eta) = \Psi/\sqrt{vxU},$$

$$g(x, \ \eta) = A /\left(\frac{H_0}{U_0} \sqrt{vxU}\right). \tag{4}$$

Using the differentiation formulas

$$\frac{\partial}{\partial x} = \left(\frac{\partial}{\partial x}\right) + \frac{1}{2} \frac{\alpha - 1}{x} \eta \frac{\partial}{\partial \eta},$$

$$\frac{\partial}{\partial y} = \sqrt{\frac{\overline{U}}{yx}} \frac{\partial}{\partial \eta},$$
(5)

where

$$\alpha(x) = x \frac{dU}{dx} / U, \tag{6}$$

we obtain the following system of equations:

$$\begin{split} & 2 \frac{\partial^3 f}{\partial \eta^3} + f \frac{\partial^2 f}{\partial \eta^2} - \beta^2 g \frac{\partial^2 g}{\partial \eta^2} + \\ & + \alpha \left(x \right) \left\{ f \frac{\partial^2 f}{\partial \eta^2} - 2 \left(\frac{\partial f}{\partial \eta} \right)^2 + 2 - \right. \\ & - \beta^2 \left[g \frac{\partial^2 g}{\partial \eta^2} - 2 \left(\frac{\partial g}{\partial \eta} \right)^2 + 2 \right] \right\} = \\ & = 2x \left[\frac{\partial f}{\partial \eta} \frac{\partial^2 f}{\partial x \partial \eta} - \frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial \eta^2} - \right. \\ & - \beta^2 \left(\frac{\partial g}{\partial \eta} \frac{\partial^2 g}{\partial x \partial \eta} - \frac{\partial g}{\partial x} \frac{\partial^2 g}{\partial \eta^2} \right) \right], \\ & \frac{2}{\Pr_m} \frac{\partial^2 g}{\partial \eta^2} + f \frac{\partial g}{\partial \eta} - g \frac{\partial f}{\partial \eta} + \\ & + \alpha \left(x \right) \left(f \frac{\partial g}{\partial \eta} - g \frac{\partial f}{\partial \eta} \right) = \end{split}$$

Totals of C(x) and a (x) for best bilital motions		
U(x).	$\left \alpha(x) = x \frac{dU}{dx} \middle/ U \right $	Values of a, b, c
1-x	$-\frac{x}{1-x}$	a = 0, b = -1, c = -1
1+x	$\frac{x}{1+x}$	a = 0, b = 1, c = 1
$(1-x)^n$	$-\frac{nx}{1-x}$	a = 0, b = -n, c = -1
$(1+x)^n$	$\frac{nx}{1+x}$	a=0, b=n, c=1
$\frac{1}{1-x}$	$\frac{x}{1-x}$	a = 0, b = 1, c = -1
$\frac{1}{1+x}$	$-\frac{x}{1+x}$	a = 0, b = -1, c = 1
$\frac{1}{(1-x)^n}$	$\frac{nx}{1-x}$	a=0, b=n, c=-1
$\frac{1}{(1+x)^n}$	$-\frac{nx}{1+x}$	a=0, b=-n, c=1
e ^{-nx}	— nx	a=0, b=-n, c=0
e^{nx}	nx	a=0, $b=n$, $c=0$
$x - x^2$	$\frac{1-2x}{1-x}$	a = 1, b = -2, c = -1
$x + x^2$	$\frac{1+2x}{1+x}$	a = 1, b = 2, c = 1

$$= 2x \left(\frac{\partial f}{\partial \eta} \frac{\partial g}{\partial x} - \frac{\partial g}{\partial \eta} \frac{\partial f}{\partial x} \right),$$

$$f = \frac{\partial f}{\partial \eta} = 0, \quad g = 0 \quad \text{for } \eta = 0,$$

$$\frac{\partial f}{\partial \eta} \to 1, \quad \frac{\partial g}{\partial \eta} \to 1 \quad \text{for } \eta \to \infty.$$
(7)

Solution of system (7). We will solve system (7), noting that $\alpha(x)$ can be expressed in the form

$$\alpha(x) = \frac{a + bx}{1 + cx} \,. \tag{8}$$

The method by means of which it is possible to select the velocity of potential motion U(x), for which $\alpha(x)$ is expressed in the form (8), and hence for which the motion in the boundary layer is self-similar, is illustrated in the table.

We substitute ratio (8) into system (7) and find its solution in the form of a series in powers of x:

$$f(x, \eta) = f_0(\eta) + xf_1(\eta) + x^2f_2(\eta) + ...,$$

$$g(x, \eta) = g_0(\eta) + xg_1(\eta) + x^2g_2(\eta) +$$
(9)

Then for determining the functions f_0 , g_0 , f_1 , g_1 , etc. we obtain the following systems of equations:

$$f_0^{(\prime)'} + \frac{a+1}{2} f_0 f_0^{(\prime)} - a (f_0^{(\prime)^2} - 1) - \frac{1}{2} g_0 g_0^{(\prime)} - a (g_0^{(\prime)^2} - 1) \right] = 0,$$

$$\frac{1}{\Pr_m} g_0^{(\prime)} + \frac{a+1}{2} (f_0 g_0^{(\prime)} - g_0 f_0^{(\prime)}) = 0;$$
(10)

$$f_{1}^{'''} + \frac{a+1}{2}f_{0}f_{1}^{''} - (2a+1)f_{0}^{'}f_{1}^{'} +$$

$$+ \frac{a+3}{2}f_{0}^{''}f_{1} - \beta^{2}\left[\frac{a+1}{2}g_{0}g_{1}^{''} -$$

$$-(2a+1)g_{0}^{'}g_{1}^{'} + \frac{a+3}{2}g_{0}^{''}g_{1}\right] =$$

$$= b\left[f_{0}^{'^{2}} - \frac{1}{2}f_{0}f_{0}^{''} - 1 -$$

$$-\beta^{2}\left(g_{0}^{'^{2}} - \frac{1}{2}g_{0}g_{0}^{''} - 1\right)\right] + ac\left[1 - f_{0}^{'^{2}} + \frac{1}{2}f_{0}f_{0}^{''} -$$

$$-\hat{p}^{2}\left(1 - g_{0}^{'^{2}} + \frac{1}{2}g_{0}g_{0}^{''}\right)\right],$$

$$\frac{1}{\Pr_{m}}g_{1}^{''} + \frac{a+1}{2}(f_{0}g_{1}^{'} - g_{0}f_{1}^{'}) + \frac{a+3}{2}(g_{0}^{'}f_{1} - f_{0}^{'}g_{1}) =$$

$$= \frac{b}{2}(f_{0}g_{0} - g_{0}^{'}f_{0}) + \frac{ac}{2}(f_{0}g_{0}^{'} - g_{0}f_{0}^{'}), \tag{11}$$

The boundary conditions for systems (10) and (11) are as follows:

$$f_0 = g_0 = f_1 = g_1 = \dots = 0, \quad f'_0 = f'_1 = \dots = 0$$

$$\text{for } \eta = 0,$$

$$f'_0 \to 1, \quad g'_0 \to 1, \quad f'_1 = g'_1 = \dots = 0 \quad \text{for } \eta \to \infty.$$
 (12)

We note that system (10) is nonlinear, and its solution depends on the value of a (a = 0 for a flat plate without a pressure gradient and a = 1 for a cylinder). These equations coincide with the equations obtained by Belubekyan [1] for the case of self-similar motion $U(x) = kx^a$. We also note that the zero-order approximations f_0 and g_0 are independent of the constants b and c, but depend on the value of a. Consequently, they are ordinary functions, whereas the functions f_1 and g_1 are not expressed by ordinary functions, since they contain the constants b and c. However, for a certain value of a these functions can be expressed in terms of ordinary functions, if we select the solution of system (11) in the form [4]

$$f_1(\eta) = bf_{11}(\eta) + cf_{12}(\eta),$$

$$g_1(\eta) = bg_{11}(\eta) + cg_{12}(\eta).$$
(13)

Thus, from (11), with (13) in mind, we obtain the following system of ordinary inhomogeneous differential equations:

$$\begin{split} f_{i}^{"} &+ \frac{a+1}{2} f_{0} f_{i}^{"} - (2a+1) f_{0}^{'} f_{i}^{'} + \frac{a+3}{2} f_{0}^{"} f_{i} - \\ &- \beta^{2} \left[\frac{a+1}{2} g_{0} g_{i}^{"} - (2a+1) g_{0}^{'} g_{i}^{'} + \right. \\ &+ \frac{a+3}{2} g_{0}^{"} g_{i}^{'} \right] = A_{i}, \end{split}$$

$$\frac{1}{\Pr_{m}} g_{i}'' + \frac{a+1}{2} (f_{0}g_{i}' - g_{0}f_{i}') +
+ \frac{a+3}{2} (f_{0}g_{i} + f_{i}g_{0}') = B_{i};$$
(14)

$$f_i(0) = g_i(0) = f'_i(0) = \dots = 0,$$

 $f'_i(\infty) = g'_i(\infty) = \dots = 0.$ (15)

Here, the subscript i denotes 11 or 12, and

$$A_{11} + f_0^{'^2} - \frac{1}{2} f_0 f_0^{'} - 1 - \beta^2 \left(g_0^{'^2} - \frac{1}{2} g_0 g_0^{''} - 1 \right),$$

$$A_{12} =$$

$$= a \left[1 - f_0^{^2} + \frac{1}{2} f_0 f_0^{''} - \beta^2 \left(1 - g_0^{'^2} + \frac{1}{2} g_0 g_0^{''} \right) \right],$$

$$B_{11} = \frac{1}{2} (f_0 g_0 - g_0^{'} f_0), \quad B_{12} = \frac{a}{2} (f_0 g_0^{'} - g_0 f_0^{'}).$$

It follows from system (14) that the equations for determining the functions f_{11} and g_{11} coincide with the equations obtained by Belubekyan [1]. Since the functions $f_0(\eta)$, $g_0(\eta)$, $f_{11}(\eta)$, $g_{11}(\eta)$, etc. can be tabulated for various values of a, we can determine u, v, H_X , H_Y , etc. We have

$$u = U(x) \{ f'_0(\eta) + x [bf'_{11}(\eta) + cf'_{12}(\eta)] + \dots \},$$

$$H_x = H_0 \frac{U(x)}{IL} \{ g'_0(\eta) + x [bg'_{11}(\eta) + cg'_{12}(\eta)] + \dots \}. \quad (16)$$

NOTATION

u and v are velocity components along x and y; H_X and H_y are components of the magnetic field; ρ is the density; ν is the viscosity; σ is the electrical conductivity of the fluid; U_0 and H_0 are the velocity and magnetic field strength at infinity; U(x) and $(H_0/U_0)U(x)$ are the velocity and magnetic field strength at the outer edge of the boundary layer; ψ is the stream function; A is the component of magnetic field vector potential perpendicular to the plane of motion; $\beta^2=H_0^2/4\pi\rho U_0^2$ is the Alfvén number; Pr_m is the magnetic Prandtl number; α , b, c, and k are constants.

REFERENCES

- 1. M. V. Belubekvan, IFZh, 6, no. 8, 1963.
- 2. G. A. Lyubimov, PMM, 26, no. 5, 1962.
- 3. A. G. Kulikovskii and G. A. Lyubimov, Magneto-hydrodynamics [in Russian], Fizmatgiz, 1962.
 - 4. H. Görtler, J. Math. and Mech., 6, no. 1, 1957.

20 June 1967 Babeşa-Boiai University, Cluj, Rumania