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The author investigates the problem of a plane boundary layer in a
viscous incompressible fluid with high conductivity in the presence

of a magnetic field, The class of potential flows for which the system
examined in [1]reduces to an ordinary system is determined.

In [1] M. V. Belubekyan suggested a method of re-
ducing the nonlinear system of partial differential
equations of a boundary layer in the presence of a
magnetic field to ordinary differential equations. Belu-
bekyan's method is based on the expansion in powers
of x of the parameter characterizing the pressure
gradient o (x) = x(dU/dx)/U.

Noting that a(x) may have the form

a -+ bx

o= 14ex

we will determine the class of potential motions for
which the system considered by Belubekyan reduces
to an ordinary system. This method can be extended
to the case when a(x) is expressed as the ratio of two
polynomials.

Boundary layer equations. As in [2] and [3], we will
consider a viscous incompressible conductive fluid
with high electrical conductivity. Moreover, we as-
sume that: a) the motion is plane, b) the applied elec-
tric field E is equal to zero, c) the magnetic field H
is applied in the plane of motion and at infinity is
parallel to the velocity of potential motion.

With these assumptions the equations of the sta-
tionary boundary layer take the form [1]
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System (1) must be integrated with the following
boundary conditions:

u=v=H,=0 for y=0,

u—U (x), Hx—+%‘lU(x) for y— co. (2)
4

In these equations the coordinate x is taken in the

plane of motion, and the coordinate y normal to that

plane.
We set
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and make the change of variables
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Using the differentiation formulas
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we obtain the following system of equations:
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Table
Forms of U(x) and « (x) for Self-Similar Motions
U
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Solution of system (7). We will solve system (7),
noting that o (x) can be expressed in the form

a-+ bx (8)
1doex

The method by means of which it is possible to
select the velocity of potential motion U(x), for which
a(x) is expressed in the form (8), and hence for which
the motion in the boundary layer is self-similar, is
illustrated in the table.

We substitute ratio (8) into system (7) and find its
solution in the form of a series in powers of x:

fx, m) =fom) + xfr () -+ f5 () 4 ...,
g, ) =giMm +xg1(m) +xgm) + ... (9)

o(x) =

Then for determining the functions fy, g, fi, g1, etc.
we obtain the following systems of equations:
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The boundary conditions for systems (10) and (11)
are as follows:

fo=g=h=g=..=0, fo=fi=..=0

fo>1, g1, fi=g =..=0 for n>c. (12)

We note that system (10) is nonlinear, and its
solution depends on the value of a (a = 0 for a flat
plate without a pressure gradient and ¢ = 1 for a cyl-
inder). These equations coincide with the equations
obtained by Belubekyan [1] for the case of self-similar
motion U(x) = kx?. We also note that the zero-order
approximations fy and gy are independent of the con-
stants b and ¢, but depend on the value of a. Conse-
quently, they are ordinary functions, whereas the func-
tions f1 and g are not expressed by ordinary functions,
since they contain the constants b and ¢. However, for
a certain value of a these functions can be expressed in
terms of ordinary functions, if we select the solution of
system (11) in the form [4]

Fi () = bfu (M) + cfr2 (M),
&1(n) = bgu (n) + cg1z (y)- (13)

Thus, from (11), with (13) in mind, we obtain the
following system of ordinary inhomogeneous differ-
ential equations:
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(fog: + figy) = Bs (14)
£00) = g;(0) =f; (0) = ... =0,
Ji () =g} (o0) = ... =0. (15)

Here, the subscript i denotes 11 or 12, and
2 1, 1 .
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It follows from system (14) that the equations for
determining the functions fi; and g;; coincide with the
equations obtained by Belubekyan [1]. Since the func-
tions foM), (M), f1:(M), g11(N), etc. can be tabulated for

various values of a, we can determine u, v, Hy, Hy, etc.

" We have

uw=U{fo(m -+ x[bfum + cfiam] + ..},

H, — “’ (g (n) - xTbg], () +cgy () + ...} (16)

NOTATION

u and v are velocity components along x and y; Hy
and Hy are components of the magnetic field; p is the
density; v is the viscosity; o is the electrical con-
ductivity of the fluid; Uy and Hy are the velocity and
magnetic field strength at infinity; U(x) and (Hy/Uy)U(x)
are the velocity and magnetic field strength at the outer
edge of the boundary layer; ¢ is the stream function;
A is the component of magnetic field vector potential
perpendicular to the plane of motion; B° = Hi/4mpU}
is the Alfvén number; Pry, is the magnetic Prandtl
number; a, b, ¢, and k are constants.
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